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ON LEVI’S THEOREM FOR LEIBNIZ ALGEBRAS
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Abstract

A Lie algebra over a field of characteristic 0 splits over its soluble radical and all complements are
conjugate. I show that the splitting theorem extends to Leibniz algebras but that the conjugacy theorem
does not.
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A left Leibniz algebra is a linear algebra L whose left multiplication operators
da : L→ L, defined by da(x) = ax for all a, x ∈ L, are derivations. The basic theory
of Leibniz algebras and their modules is set out in Loday and Pirashvili [3].

The subspace 〈x2 | x ∈ L〉 spanned by the squares of elements of L is called the
Leibniz kernel of L and denoted Leib(L). It is an abelian ideal of L, Leib(L)L = 0 and
L/ Leib(L) is a Lie algebra. Thus, Leibniz algebras are almost Lie algebras and it is
natural to consider which of the theorems about Lie algebras generalise to Leibniz
algebras. For example, Ayupov and Omirov [1, Theorem 2] and Patsourakos [4,
Theorem 7] have shown that Engel’s theorem holds for Leibniz algebras. Ayupov and
Omirov [1, Theorem 3] have shown that, if L is a finite-dimensional Leibniz algebra
over a field of characteristic 0 and R is its soluble radical, then LR is nilpotent.

The Levi–Malcev theorem asserts that, if L is a finite-dimensional Lie algebra over
a field of characteristic 0, then L splits over its soluble radical and that all complements
are conjugate. In this note, I show that the splitting theorem extends to Leibniz algebras
but that the conjugacy theorem does not. As for Lie algebras, the splitting theorem
achieves some reduction of the investigation of representations of Leibniz algebras to
problems of Leibniz representations of semi-simple Lie algebras and of representations
of soluble Leibniz algebras.

T 1. Let L be a finite-dimensional Leibniz algebra over a field of characteristic
0 and let R be its soluble radical. There exists a semi-simple subalgebra S of L such
that S + R = L and S ∩ R = 0.
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P. Put K = Leib(L). Clearly, K ⊆ R and L/R is a semi-simple Lie algebra. By
Levi’s theorem (see Jacobson [2, Ch. III, p. 91]), there exists a semi-simple subalgebra
S ∗/K of L/K such that S ∗ + R = L and S ∗ ∩ R = K. It is sufficient to prove that S ∗

splits over K, so we may suppose R = K.
Since KL = 0, L may be considered as a left module for the semi-simple Lie algebra

L/K. By Whitehead’s theorem (see Jacobson [2, Ch. III, Theorem 8, p. 79]), this
module is completely reducible. Thus, there exists a submodule S complementing K.
Since LS ⊆ S , we have S S ⊆ S and S is a subalgebra. �

E 2. Let S be a simple Lie algebra and let K be isomorphic to S as a left
S -module. I denote by x′ the element of K corresponding to x ∈ S under this
isomorphism. I make K into a Leibniz module by defining the right action to be 0.
Let L be the split extension of K by S . Then L is a Leibniz algebra and Leib(L) = K.
The space S 1 = {(s, s′) | s ∈ S } is another subalgebra complementing K since, using
the module isomorphism,

(s, s′)(t, t′) = (st, st′) = (st, (st)′).

For any x = (s, k) ∈ L, the inner derivation dx = ds, dx(S ) ⊆ S and so exp(dx)(S ) ⊆ S .
Thus, S and S 1 are not conjugate.
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